Distributional Consequences of Monetary Policy: Evidence from Local Housing Markets Calvin He

15 July 2019 Reserve Bank of Australia

Disclaimer: Views expressed in this presentation are those of the author/s and not necessarily those of the Reserve Bank of Australia. Use of any results from this presentation should clearly attribute the work to the author/s and not to the Reserve Bank of Australia.

D19/68406 GENERAL

Motivation

- 'It is pretty clear that there is no such thing as the Australian housing market. What we have is a series of separate, but interconnected, markets.'
 - RBA Governor Lowe, March 2019

Australian Housing Prices

Sources: CoreLogic®; RBA

Sydney Housing Price Declines

Question

- Does monetary policy affect housing prices heterogeneously across regions?
- If so, why?

Data

- Local housing market data at Statistical Area Level 3
 - 351 SA3 regions in Australia
 - Think Local Government Area
- Hedonic housing price indices from 1980

- Exploit local area variation
- Panel regressions + local projection

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

• $\ln(P_{i,t+h}) - \ln(P_{i,t})$ is the log difference of the real dwelling price index for an SA3 region i from period t to period t+h

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \frac{\alpha_i}{\alpha_i} + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

- $\ln(P_{i,t+h}) \ln(P_{i,t})$ is the log difference of the real dwelling hedonic index for an SA3 region i from period t to period t+h
- α_i represents an SA3 region fixed effect

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

- $\ln(P_{i,t+h}) \ln(P_{i,t})$ is the log difference of the real dwelling hedonic index for an SA3 region i from period t to period t+h
- α_i represents an SA3 region fixed effect
- ΔCash Rate_t represents the quarterly change in the cash rate target in period t

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

- $\ln(P_{i,t+h}) \ln(P_{i,t})$ is the log difference of the real dwelling hedonic index for an SA3 region i from period t to period t+h
- α_i represents an SA3 region fixed effect
- ΔCash Rate_t represents the quarterly change in the cash rate target in period t
- $Price\ Group_g$ is an indicator variable equal to one if region i belongs to group g

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

- $\ln(P_{i,t+h}) \ln(P_{i,t})$ is the log difference of the real dwelling hedonic index for an SA3 region i from period t to period t+h
- α_i represents an SA3 region fixed effect
- ΔCash Rate_t represents the quarterly change in the cash rate target in period t
- $Price\ Group_g$ is an indicator variable equal to one if region i belongs to group g
- *X_{i,t}* represent controls

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{g} \beta_{g,h} \Delta Cash Rate_t * Price Group_g + X_{i,t} + \epsilon_{i,t}$$

- $\ln(P_{i,t+h}) \ln(P_{i,t})$ is the log difference of the real dwelling hedonic index for an SA3 region i from period t to period t+h
- α_i represents an SA3 region fixed effect
- ΔCash Rate_t represents the quarterly change in the cash rate target in period t
- $Price\ Group_g$ is an indicator variable equal to one if region i belongs to group g
- *X_{i,t}* represent controls

But this could produce biased results...

Better Identification

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \gamma_t + \sum_{g_{-b}} \beta_{g,h}^* \Delta Cash \ Rate_t * Price \ Group_g + X_{i,t} + \epsilon_{i,t}$$

$$\text{where } \beta_{g,h}^* = \beta_{g,h} - \beta_{b,h}$$

- Remove a benchmark group (b)
- γ_t are time fixed effects absorb benchmark group
- Assumption: No variable that cash rate systematically responds to that has a heterogeneous effect on housing prices across regions. Bias across regions is the same.

Better Identification

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \gamma_t + \sum_{g_{-b}} \beta_{g,h}^* \Delta Cash \ Rate_t * Price \ Group_g + X_{i,t} + \epsilon_{i,t}$$

$$\text{where } \beta_{g,h}^* = \beta_{g,h} - \beta_{b,h}$$

- Remove a benchmark group (b)
- γ_t are time fixed effects absorb benchmark group
- Assumption: No variable that cash rate systematically responds to that has a heterogeneous effect on housing prices across regions. Bias across regions is the same.
- $\beta_{g,h}^*$ = Difference in response of group g to the benchmark group to a 100 basis point increase in the cash rate.

Results

Absolute Responses

Sources: CoreLogic®; RBA

Differential ResponsesRelative to median group; price deciles

Sources: CoreLogic®; RBA

Why?

Why?

Take the distribution of responses

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \beta_i \Delta Cash Rate_t + X_{i,t} + \epsilon_{i,t} \forall i$$

Use model selection methods to pick factors that explain the differential in responses

Distribution of Responses 6 quarters

Sources: CoreLogic®; RBA

Other factors

- Collect around 40 variables related to:
 - Density
 - Income
 - Wealth
 - Supply measures
 - Hand to mouth
 - Age
 - Property status
 - State

LASSO, Elastic Net and Least Angle Regression

- Model shrinkage methods
 - LASSO and Elastic Net penalised regression
 - Least Angle Regression 'democratised stepwise'

Variables chosen

	Variable	More or less responsive
1	Population density	More
2	Average investment income	More
3	Household net worth	More
4	Investor density	More
5	Western Australia	More
6	Per cent of people earning between \$1-\$499	Less
7	Per cent of people on government benefits	Less
8	Proportion of value determined by 'structure'	Less
9	New South Wales	Less

Supply can partially explain the differentials...

	Variable	More or less responsive
1	Population density	More
2	Average investment income	More
3	Household net worth	More
4	Investor density	More
5	Western Australia	More
6	Per cent of people earning between \$1-\$499	Less
7	Per cent of people on government benefits	Less
8	Proportion of value determined by 'structure'	Less
9	New South Wales	Less

Ability to invest matters

	Variable	More or less responsive
1	Population density	More
2	Average investment income	More
3	Household net worth	More
4	Investor density	More
5	Western Australia	More
6	Per cent of people earning between \$1-\$499	Less
7	Per cent of people on government benefits	Less
8	Proportion of value determined by 'structure'	Less
9	New South Wales	Less

Hand-to-mouth households matter

	Variable	More or less responsive
1	Population density	More
2	Average investment income	More
3	Household net worth	More
4	Investor density	More
5	Western Australia	More
6	Per cent of people earning between \$1-\$499	Less
7	Per cent of people on government benefits	Less
8	Proportion of value determined by 'structure'	Less
9	New South Wales	Less

Some states are different...

	Variable	More or less responsive
1	Population density	More
2	Average investment income	More
3	Household net worth	More
4	Investor density	More
5	Western Australia	More
6	Per cent of people earning between \$1-\$499	Less
7	Per cent of people on government benefits	Less
8	Proportion of value determined by 'structure'	Less
9	New South Wales	Less

Summary

- Monetary policy temporarily changes the distribution of housing wealth
 - An increase in the cash rate will drive larger decreases in housing prices in more expensive areas and vice-versa
 - Effect is temporary
- Why?
 - 1) Areas with more wealth and investors appear to be more sensitive to monetary policy → leverage or discount factor channel
 - 2) Areas with more hand to mouth individuals are less sensitive → consistent with Kaplan and Violante (2019)
 - 3) Supply constraints may explain some of the differentials but probably not the complete story

Questions

Spares

Price Groups

All 16 quarters

Differential ResponsesRelative to median group; price deciles

Sources: CoreLogic®; RBA

Detached Houses Only

Differential Responses Relative to median group; price deciles

With extra controls

Differential ResponsesRelative to median group; price deciles

With AR terms

Differential ResponsesRelative to median group; price deciles

Metropolitan regions only

Differential ResponsesRelative to median group; price deciles

Sources: CoreLogic®; RBA

Composition of Price Groups

Another methodology

Identification

Romer and Romer style monetary policy shocks

```
Cash\ Rate_t = \alpha + RBA\ Forecasts_t + Credit\ Spreads_t + \epsilon_t
```

- RBA forecasts of GDP, inflation, unemployment and housing prices.
- Credit spreads

By price group

$$\ln(P_{i,t+h}) - \ln(P_{i,t}) = \alpha_i + \sum_{j=1}^{10} \beta_j MPShock_t * D_j + X_{i,t} + \epsilon_{i,t}$$

- D_i = dummy variable if region i is in price decile j
- $X_{i,t}$ contains lags of the monetary policy shocks.

All regions

Metropolitan only

Impulse Response of Housing Prices

Responses by region and state

Variation is state driven

- Implies demand response in states are different.
- Industry shares are a likely candidate explanation

Variation is state driven

- Implies demand response in states are different.
- Industry shares are a likely candidate explanation
- 'Given these contrasting experiences, it is pretty clear that there is no such thing as the Australian housing market. What we have is a series of separate, but interconnected, markets.' – Phil Lowe 2019

Elasticities

• What about supply elasticity differentials?

Elasticities

- What about supply elasticity differentials?
- Distribution of elasticities appears narrow (Bishop (forthcoming))

Motivation (why we care about distributions)

- The distribution can help identify the effects of monetary policy on housing
- Better understand the transmission of monetary policy
- The distribution can affect the aggregate
- Aggregate data produce imprecise estimates.