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1. Aims of the paper

1. Show that the appropriate updating rule for beliefs on RX R is given
by the full Bayesian rule.

2. Show that the full Bayesian rule operating on IRX R yields intuitive
results in the situation described by Gelman's paradox.

3. Show that there 1s another paradox: ambiguity averse decision makers
might pay less to reduce uncertainty than ambiguity neutral decision

makers who are otherwise identical.
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2. Algebra

l real part

a+be (With: g b€R)

T imaginary part

(a+be )+ (ct+de )=(a+c)+(b+d)e

(a+be ) (c+de )=(ac)+ (ad+bct+bd)e

£ =RXR




Algebra — idempotent representation

l

a+ (a+b)e (with: a,6€R)

T

[a+(a+D)e |+ [c+ (c+d)e |=(a+c)+ (a+ b+ c+d)e

[a+(at+b)e | [c+ (c+d)e ] = (ac)+ (ac+ad+bct+bd)e

£ =RXR




3. Priors

Definition 3: an objective information mapping, B:F— [O ,1] ,1s a
superadditive capacity, normalized to unity (°B ( .Q)= 1), whose empty set
is null (B ( ®)= 0), and which has a non-empty core, denoted:
core(B), which is closed.

Since the core of B is non-empty, there exists a set of numbers, { ,5 (A) }
JAEF | with F(A)€E[0,1], so that B+ /7 is a canonical probability.
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Objective information:

1. 0<B(A) VAEF
2. B(Q)=1

3a. B (AUB)Z% (A)‘F% (B) when
ANF=Q

3b. B (AU B)Z% (A)-HB (B)—% (Aﬂ B) (if also supermodular)
4. AL =>B(A)=B(5).

[ »




Simplex of beliefs




Priors

Definition 4: an imprecise belief 1s a mapping, ,ale F— £, with: ,ale

(A)=a(A)+b(A)e, and: a(A)=B(A) and: H(A)=/L(A) for
all AEF.

Note that: B (A )+ (A)= [,ale (A) /[ is a probability.




eR
A

Belief mapping

Im(wle (4)) [~~~

\ : Re(ule (A)) "R

[ude (A)]




Example: the Ellsberg 3 colour problem

ule (b)=0+1/3 e=pule (y),

ule (r)=1/3 +0e

wle MUb)=1/3 +1/3 e=ule (1Vy)

wle (Vy)=2/3 + 0Oe




Example: the boxer, the wrestler and the coin flip*

Heads Tails

White

Black

*Andrew Gelman




Example: the boxer, the wrestler and the coin flip

wle (hb)= ule (hw)= ule (th)= ule (tw)=0+1/4 ¢
wle (black) = pule (white)=0+1/2 ¢
wle (heads) = ule (tails)=1/2 + 0e

wle (hblc)=ule (hwlc)=ule (thbTc)=ule (twlic)=1/2+1/4¢




Proposition 2:

1. 0<ude (A) VAEF

2. wle (Q)=1

3a. Jule (AUR)|=[ule (A)[+][ude (B)] when ANB=0Q
3b. [ple (AVB)[=[ule (A)f+[ule (B)]-[ule (ANB)]

(if also supermodular)
4. ADF=>ule (A)|=[wle (B)]

Recall that, [xile |=B+5.
5. e (25=0.




Proposition 3:

1. 0<ude (A) VAEF

2. wle (Q)=1

3a. wle (AVR)=ule (A)+ule (B) when ANB=Q

3b. wle (AVB)zule (A)+ule (B)—ule (ANF) (ifalso

supermodular)
4. ADF=>ule (A)=zule (F)
Notet at: (/(be) (Qb[,ale )=(B,B+0).




4. Updating
Definition: P (4)=1—B(ATc )
Definition: //Te (A)= (1-B(ATc), [ule (A)])
=1—ule (ATc).

Definition: ,ale AE=(§B(A|B),[/I\[€ (A|B)])

Definition:

BAL =B(ANLE)/B(ANEF)+ B (ATcNF)




Updating

Y24 Flc

A ANF ANFBTc

ATc AlcniB AlcnFBTc




Full Bayesian Updating Rule

Proposition 5:

wle AB=ule (ANF) /e (ANB)+ule (ATcNFB)




Proposition 6:

1. 0<ule A5
2. wle AA=1
3a. de AUCE Zule AR +ule CB  when ANCFQD
3b. wde AVCE >uple AR +ule CB—ule ANCEH

4. AC>ule AP >ule CF
5. ule Q5 =0.




S. Independence

Definition: Scalar independence of A on B implies: ,ale AF = ,ale
AQ=ule (A).

Note that scalar independence of A on /& does not imply scalar

independence of & on A.

Definition:

WA\ B =[ule (ANB)+ulTe (ATcnB)/ule (B) ]




Independence

Proposition 9: if A is scalar independent of /5, and vice versa, then:

wle (A). e (B).xdA|B=ule (A). wle (B).xlB|A=
wle (ANB).

Note that mutual scalar independence implies that: A4A4 |F =K 494 |4 .
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6. Probability chains

Proposition 10:

wle ABPNC .klA\FC. ule BC .xklB|C=ule ANBC .
KIAR|C

Remark: the ‘sequential’ updating of imprecise beliefs resembles the
updating process for canonical probabilities, but there are also adjustment
factors which track the degrees of ambiguity of the relevant conditional
beliefs.
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7. Paradox no.1: the boxer, the wrestler and the coin flip

Heads Tails




Example: the boxer, the wrestler and the coin flip

ule (hb)= ple (hw)= ule (th)= ule (tw)=(c/2, 1/4)

wle (black) = pule (white)=(s 1/2)

ule (heads)= ule (tails)= (1,2, 1/2)

wle (hbolc)=wle (hwlc)=ule (thTc)=ule (twlc)=(1/2, 3/4)

Note that heads and black are independent events, and that: x4 =xis2=1.




Example: the boxer, the wrestler and the coin flip

Full Bayesian updating yields:
wule (hb|black)=(1/2, 1/2)
wule (hblheads)=(s, 1/2 )=, 1/2)

ule (hblhbVtw)=(s, 1/2 )= (0, 1/2 )




Gelman Paradox: full Bayesian rule

White

Black

Heads Tails

Prior

White

Black

Heads Tails

Posterior




Gelman Paradox: Bayesian rule

White

Black

Heads Tails

Prior

White

Black

Heads Tails

Posterior




Gelman Paradox: Dempster-Shafer rule

Heads Tails Heads Talls
White /_\ /_\ White
72 /2

Black U U Black

Prior Posterior




Dempster-Shafer rule

Dempster-Shafer updating yields:

BTDS (A|B)=B(AVLTc )—B(LTc)/1-B(FTc)




Gelman Paradox: robust Bayesian rule

Heads Tails Heads Tails

White White

Black .

Prior Posterior

Black

D&




8. Paradox no.2

Random variable: x:0-R, which assigns states to prizes.

The probability that x takes on a particular value, say /7, 1s given by:
wle (X=xli)=ple ({weQ:X(w)=xli }))=ule (xli)

wle (X2xli )=ule ({weQ:X(w)zxli })=ule (Xii).

A lottery, Z, 1s a vector of length ~ that assigns a probability to each prize:
LA Jule TL (X1 ), e TL (42 ), ...ude TL (xdi),...ude TL (xin)]




Behaviour

Decision makers maximize a form of real-valued, rank dependent expected utility:




Behaviour

Decision makers satisfy two assumptions:

1. has a real-valued utility function over (lotteries whose payoffs are) money: «
2. converts ambiguous to real utility at a rate:
>0: 1.€.. all +bil e —»aall +biL

Where: w2)=aiz+biLe and @w(L))=aall +biL




Dynamic behaviour

In dynamic contexts, decision makers satisfy three assumptions:

1. beliefs are updated using the full Bayesian rule

2. preferences are constant — 1.€., «(.) 1s constant




Gedankenexperiment

Heads Tails

White If you guess
correctly
which tin
contains the

Black Benjamin,

you win it!




Decision problem #1

I: status quo ante

II: payment

needed

Ifa=125
Aev,, = 30 (Real)
Aev,, = 20

OO |OF OO

O OO

ev=Re | Im | Total

ev= 0 |25| 25
ev= 50| 0] 50
ev= 0] 50| 50



Decision problem #2

Aev, = 25

OO |OF OO

O OO

ev=Re | Im | Total

ev= 0 |25| 25
ev= 50| 0] 50
ev= 0] 50| 50

——

ey =

2512550



Decision problem #2

Aev, = 22.5

OO OF |OOF
= OF [OCP

ev=Re | Im | Total

ev= 0 |25| 25
ev= 50| 0] 50
ev= 0] 50| 50

——

ey =
12.5]37.5
50



Decision problem #2

Aev,; = 27.5

OO OF |OOF
= OF [OCP

ev=Re | Im | Total

ev= 0 |25| 25
ev= 50| 0] 50
ev= 0] 50| 50

——

ey =
37.5]12.5
150



Decision problem #3

Aev, = 20

OO |OF OO

O OO

ev=Re | Im | Total

ev= 0 |25] 25
ev= 50| 0] 50
ev= 0] 50| 50

—

ey =

0 | 50150



Conclusions:

The model of updating may be of help 1n understanding:

1. Keynes’ theory of liquidity preference and the ‘liquidity trap’

2. Resistance to funding R&D




