Two paradoxes of updated beliefs under uncertainty

Keiran Sharpe

School of Business (ADFA campus), University of New South Wales, Canberra, ACT, 2600. Australia. k.sharpe@adfa.edu.au

1. Aims of the paper

- 1. Show that the appropriate updating rule for beliefs on $\mathbb{R} \times \mathbb{R}$ is given by the *full Bayesian rule*.
- 2. Show that the full Bayesian rule operating on $\mathbb{R} \times \mathbb{R}$ yields intuitive results in the situation described by *Gelman's paradox*.
- 3. Show that there is *another paradox*: ambiguity averse decision makers might pay less to reduce uncertainty than ambiguity neutral decision makers who are otherwise identical.

2. Algebra

a+be (with: $a,b\in\mathbb{R}$) imaginary part

$$(a+be)+(c+de)=(a+c)+(b+d)e$$

$$(a+be)\cdot(c+de)=(ac)+(ad+bc+bd)e$$

$$E \cong \mathbb{R} \times \mathbb{R}$$

Algebra – idempotent representation

$$a+(a+b)e$$
 (with: $a,b\in\mathbb{R}$)
$$imaginary part$$

$$[a+(a+b)e]+[c+(c+d)e]=(a+c)+(a+b+c+d)e$$

$$[a+(a+b)e]\cdot[c+(c+d)e] = (ac)+(ac+ad+bc+bd)e$$

$$E \cong \mathbb{R} \times \mathbb{R}$$

3. Priors

Definition 3: an *objective information* mapping, $\mathfrak{B}:\mathcal{F}\to[0,1]$, is a superadditive capacity, normalized to unity $(\mathfrak{B}(\Omega)=1)$, whose empty set is null $(\mathfrak{B}(\emptyset)=0)$, and which has a non-empty core, denoted: $core(\mathfrak{B})$, which is closed.

Since the core of $\mathfrak B$ is non-empty, there exists a set of numbers, $\{\beta(A)\}\$ $\downarrow A \in \mathcal F$, with $\beta(A) \in [0,1]$, so that $\mathfrak B + \beta$ is a canonical probability.

Objective information:

1.
$$0 \le \mathfrak{B}(A) \quad \forall A \in \mathcal{F}$$

2.
$$\mathfrak{B}(\Omega)=1$$

3a.
$$\mathfrak{B}(A \cup B) \geq \mathfrak{B}(A) + \mathfrak{B}(B)$$
 when $A \cap B = \emptyset$

3b.
$$\mathfrak{B}(A \cup B) \geq \mathfrak{B}(A) + \mathfrak{B}(B) - \mathfrak{B}(A \cap B)$$
 (if also supermodular)

4.
$$A \supseteq B \Rightarrow \mathfrak{B}(A) \ge \mathfrak{B}(B)$$
.

5.
$$\mathfrak{B}(\emptyset)=0$$
.

Simplex of beliefs

Priors

Definition 4: an *imprecise belief* is a mapping, $\mu \downarrow e : \mathcal{F} \rightarrow E$, with: $\mu \downarrow e$ (A) = a(A) + b(A)e, and: $a(A) = \mathfrak{B}(A)$ and: $b(A) = \beta(A)$ for all $A \in \mathcal{F}$.

Note that: $\mathfrak{B}(A) + \beta(A) = [\mu \downarrow e \ (A)]$ is a probability.

Example: the Ellsberg 3 colour problem

$$\mu \downarrow e \ (b) = 0 + 1/3 \ e = \mu \downarrow e \ (y),$$

$$\mu le(r) = 1/3 + 0e$$

$$\mu \downarrow e \ (r \cup b) = 1/3 + 1/3 \ e = \mu \downarrow e \ (r \cup y)$$

$$\mu \downarrow e \ (b \cup y) = 2/3 + 0e$$

Example: the boxer, the wrestler and the coin flip*

*Andrew Gelman

Example: the boxer, the wrestler and the coin flip

$$\mu \downarrow e \ (hb) = \mu \downarrow e \ (hw) = \mu \downarrow e \ (tb) = \mu \downarrow e \ (tw) = 0 + 1/4 \ e$$

$$\mu \downarrow e \ (black) = \mu \downarrow e \ (white) = 0 + 1/2 \ e$$

$$\mu \downarrow e \ (heads) = \mu \downarrow e \ (tails) = 1/2 + 0e$$

$$\mu \downarrow e \ (hb\uparrow c) = \mu \downarrow e \ (hw\uparrow c) = \mu \downarrow e \ (tb\uparrow c) = \mu \downarrow e \ (tw\uparrow c) = 1/2 + 1/4 \ e$$

Proposition 2:

- 1. $0 \le \mu \downarrow e(A) \quad \forall A \in \mathcal{F}$
- 2. $\mu \downarrow e(\Omega)=1$
- 3a. $|\mu \downarrow e \ (A \cup B)| = |\mu \downarrow e \ (A)| + |\mu \downarrow e \ (B)|$ when $A \cap B = \emptyset$
- 3b. $|\mu \downarrow e (A \cup B)| = |\mu \downarrow e (A)| + |\mu \downarrow e (B)| |\mu \downarrow e (A \cap B)|$ (if also supermodular)
- 4. $A \supseteq B \Rightarrow |\mu \downarrow e (A)| \ge |\mu \downarrow e (B)|$

Recall that: $\mu = \beta + \beta$. 5. $\mu \neq e$ (ϕ)=0.

Proposition 3:

- 1. $0 \le \mu \downarrow e(A) \quad \forall A \in \mathcal{F}$
- 2. $\mu \downarrow e(\Omega) = 1$
- 3a. $\mu \downarrow e (A \cup B) \ge \mu \downarrow e (A) + \mu \downarrow e (B)$ when $A \cap B = \emptyset$
- 3b. $\mu \downarrow e (A \cup B) \ge \mu \downarrow e (A) + \mu \downarrow e (B) \mu \downarrow e (A \cap B)$ (if also supermodular)
- 4. $A \supseteq B \Rightarrow \mu \downarrow e \ (A) \ge \mu \downarrow e \ (B)$

Note that: $\mu \downarrow e = (\mathfrak{B} / \mu \downarrow e) = (\mathfrak{B}, \mathfrak{B} + \beta).$ 5. $\mu \downarrow e (\mathfrak{D}) = 0.$

4. Updating

Definition: $\mathfrak{P}(A)=1-\mathfrak{B}(A\uparrow c)$

Definition: $\mu \uparrow e$ $(A) = (1 - \mathfrak{B}(A \uparrow c), [\mu \downarrow e (A)])$ = $1 - \mu \downarrow e (A \uparrow c)$.

Definition: $\mu \downarrow e$ $AB = (\mathfrak{B}(A|B), [\mu \downarrow e (A|B)])$

Definition:

 $\mathfrak{B}AB = \mathfrak{B}(A \cap B)/\mathfrak{B}(A \cap B) + \mathfrak{P}(A \uparrow c \cap B)$

Updating

	В	$B \uparrow c$
A	$A\cap B$	<i>A</i> ∩ <i>B</i> ↑ <i>c</i>
A1c	$A \hat{c} \cap B$	<i>A</i> ↑ <i>c</i> ∩ <i>B</i> ↑ <i>c</i>

Full Bayesian Updating Rule

Proposition 5:

$$\mu \downarrow e \ AB = \mu \downarrow e \ (A \cap B) / \mu \downarrow e \ (A \cap B) + \mu \uparrow e \ (A \uparrow c \cap B)$$

Proposition 6:

- 1. 0≤*μ↓e AB*
- 2. $\mu \downarrow e AA = 1$
- 3a. $\mu \downarrow e \ A \cup CB \ge \mu \downarrow e \ AB + \mu \downarrow e \ CB$ when $A \cap C \ne \emptyset$
- 3b. $\mu \downarrow e A \cup CB \ge \mu \downarrow e AB + \mu \downarrow e CB \mu \downarrow e A \cap CB$
- 4. $A \supseteq C \Rightarrow \mu \downarrow e AB \ge \mu \downarrow e CB$
- 5. $\mu \downarrow e \emptyset B = 0$.

5. Independence

Definition: Scalar independence of A on B implies: $\mu \downarrow e$ $AB = \mu \downarrow e$ $A\Omega \equiv \mu \downarrow e$ (A).

Note that scalar independence of A on B does not imply scalar independence of B on A.

Definition:

$$\kappa \downarrow A \mid B = [\mu \downarrow e \ (A \cap B) + \mu \uparrow e \ (A \uparrow c \cap B) / \mu \downarrow e \ (B)]$$

Independence

Proposition 9: if A is scalar independent of B, and vice versa, then:

$$\mu \downarrow e(A). \mu \downarrow e(B). \kappa \downarrow A \mid B = \mu \downarrow e(A). \mu \downarrow e(B). \kappa \downarrow B \mid A = \mu \downarrow e(A \cap B).$$

Note that mutual scalar independence implies that: $\kappa \downarrow A | B = \kappa \downarrow B | A$.

6. Probability chains

Proposition 10:

$$\mu \downarrow e \ AB \cap C.\kappa \downarrow A \mid BC.\mu \downarrow e \ BC.\kappa \downarrow B \mid C = \mu \downarrow e \ A \cap BC.$$

$$\kappa \downarrow AB \mid C$$

Remark: the 'sequential' updating of imprecise beliefs resembles the updating process for canonical probabilities, but there are also adjustment factors which track the degrees of ambiguity of the relevant conditional beliefs.

7. Paradox no.1: the boxer, the wrestler and the coin flip

Example: the boxer, the wrestler and the coin flip

$$\mu \downarrow e \ (hb) = \mu \downarrow e \ (hw) = \mu \downarrow e \ (tb) = \mu \downarrow e \ (tw) = (\varepsilon/2 \ , \ 1/4 \)$$

$$\mu \downarrow e \ (black) = \mu \downarrow e \ (white) = (\varepsilon, \ 1/2 \)$$

$$\mu \downarrow e \ (heads) = \mu \downarrow e \ (tails) = (1/2 \ , \ 1/2 \)$$

$$\mu \downarrow e \ (hb \uparrow c) = \mu \downarrow e \ (hw \uparrow c) = \mu \downarrow e \ (tb \uparrow c) = \mu \downarrow e \ (tw \uparrow c) = (1/2 \ , \ 3/4)$$

Note that heads and black are independent events, and that: $\kappa \downarrow h | b = \kappa \downarrow b | h = 1$.

Example: the boxer, the wrestler and the coin flip

Full Bayesian updating yields:

$$\mu \downarrow e \ (hb|black) = (1/2, 1/2)$$
 $\mu \downarrow e \ (hb|heads) = (\varepsilon, 1/2) \approx (0, 1/2)$
 $\mu \downarrow e \ (hb|hb \cup tw) = (\varepsilon, 1/2) \approx (0, 1/2)$

Gelman Paradox: full Bayesian rule

Gelman Paradox: Bayesian rule

Gelman Paradox: Dempster-Shafer rule

Dempster-Shafer rule

Dempster-Shafer updating yields:

$$\mathfrak{B} \uparrow DS (A|B) = \mathfrak{B} (A \cup B \uparrow c) - \mathfrak{B} (B \uparrow c) / 1 - \mathfrak{B} (B \uparrow c)$$

Gelman Paradox: robust Bayesian rule

Heads Tails

White $\frac{\pi}{2}$ $\frac{\pi}{2}$

Prior

Heads Tails

White

Black

Posterior

8. Paradox no.2

Random variable: $X:\Omega \to \mathbb{R}$, which assigns states to prizes.

The probability that x takes on a particular value, say $x \neq i$, is given by:

$$\mu \downarrow e \ (X=x\downarrow i) = \mu \downarrow e \ (\{\omega \in \Omega : X(\omega) = x\downarrow i\}) = \mu \downarrow e \ (x\downarrow i)$$

$$\mu \downarrow e \ (X \ge x\downarrow i) = \mu \downarrow e \ (\{\omega \in \Omega : X(\omega) \ge x\downarrow i\}) = \mu \downarrow e \ (X\downarrow i).$$

A lottery, L, is a vector of length n that assigns a probability to each prize:

$$L \triangleq [\mu \downarrow e \uparrow L (x \downarrow 1), \mu \downarrow e \uparrow L (x \downarrow 2), ..., \mu \downarrow e \uparrow L (x \downarrow i), ..., \mu \downarrow e \uparrow L (x \downarrow n)]$$

Behaviour

Decision makers maximize a form of real-valued, rank dependent expected utility:

$$\max_{\mathcal{L}} \mathcal{L} \in \mathbb{L} \quad \varphi(\sum_{i=1}^{n} \ln u \neq i \text{ } L(X \downarrow i) \cdot (u(x \downarrow i) - u(x \downarrow i - 1)))$$

This can be re-arranged and decomposed to the equivalent:

$$\max_{-L} = 1 \ln (\alpha \operatorname{Re}(\mu + \ell L(X + i)) + \operatorname{Im}(\mu + \ell L(X + i)) \cdot (u(x + i) - u(x + i) - u(x + i))$$

Behaviour

Decision makers satisfy two assumptions:

- 1. has a real-valued utility function over (lotteries whose payoffs are) money: u
- 2. converts ambiguous to real utility at a rate:

$$\alpha > 0$$
; i.e.: $a \downarrow L + b \downarrow L e \mapsto \alpha a \downarrow L + b \downarrow L$

Where:
$$v(L) = a \downarrow L + b \downarrow L e$$
 and $\varphi(v(L)) = \alpha a \downarrow L + b \downarrow L$

Dynamic behaviour

In dynamic contexts, decision makers satisfy three assumptions:

- 1. beliefs are updated using the full Bayesian rule
- 2. preferences are constant i.e., u(.) is constant
- 3. the maximand is: $\varphi(\sum_{i=1}^{i=1} \ln \|\mu + \ell \| (X \downarrow i) \cdot (u(x \downarrow i) u(x \downarrow i 1)))$

Gedankenexperiment

Heads Tails

White $0, \frac{1}{4}$ $0, \frac{1}{4}$ $0, \frac{1}{4}$ $0, \frac{1}{4}$ Black

If you guess correctly which tin contains the Benjamin, you win it!

Conclusions:

The model of updating may be of help in understanding:

- 1. Keynes' theory of liquidity preference and the 'liquidity trap'
- 2. Resistance to funding R&D

