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Abstract 

In the light of the topical nature of ‘bananas and petrol’ being blamed for driving 
much of the inflationary pressures in Australia during 2006, the ‘headline’ and 
‘underlying’ rates of inflation are scrutinised in terms of forecasting accuracy. A 
general structural time-series modelling strategy is then employed to estimate models 
for both types of Consumer Price Index (CPI) measures.  From this, out-of-sample 
forecasts are generated from the various models. The underlying forecasts are 
subsequently adjusted to facilitate comparison to the headline forecasts. Having 
completed that, the Ashley, Granger and Schmalensee (1980) AGS test is performed 
to find out if there is a statistically significant difference between the root mean 
square errors (RMSEs) of the two models.  The results lend weight to the recent 
findings of Song (2005), insofar that forecasting models using underlying rates are not 
systematically inferior to those based on the headline rate of inflation.  In fact, strong 
evidence is found that underlying measures produce superior forecasts. 
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1. Introduction 

In recent years, the move towards inflation targeting by central banks of numerous 

countries has meant that the inflation rate is watched much more closely by those 

relevant central banks, the Reserve Bank of Australia (RBA) among them.  In their 

attempts to maintain the inflation rate within their desired bank of between 2 and 3 

per cent per annum, they are well aware of the vagaries of the benchmark Consumer 

Price Index (CPI), often referred to as the ‘headline’ rate of inflation, insofar that it 

often captures temporary or even one-off effects arising from unusual circumstances.  

To this end, they (in conjunction with the Australian Bureau of Statistics) produce 

various alternative measures of inflation that are designed to more accurately reflect 

the true rate of change of the overall price level.  These ‘underlying’ measures are 

also used in conjunction with the headline rate in matters of interest rate setting by the 

RBA Board in their monthly meetings. 

 

The compilation and reporting of these underlying measures of inflation took an 

interesting turn in the second quarter of 2006, when the quarterly headline inflation 

rate jumped to 1.6 per cent, taking the annual rate to 3.9 per cent.  With public and 

media speculation increasing regarding the possibility of rising interest rates at a 

politically sensitive time, Prime Minister Howard and Treasurer Costello were quick 

to blame the CPI ‘aberration’ on significant price hikes in petrol and bananas.1  Since 

the former was due to a bout of insurgency activity in the Middle East, and the latter 

mostly due to the effects of Cyclone Larry in North Queensland, these effects were 

                                                 
1 Fruit prices comprise 0.95 per cent of the overall index, of which bananas is only one item, however, 
the price of bananas increased by more than a factor of five in the second quarter of 2006, and in many 
cases were simply unavailable.  The concurrent petrol price hikes were modest in comparison, though 
this item has more weighting in CPI calculations, at 3.78 per cent.  For a full list of CPI weightings, see 
Australian Bureau of Statistics (2005). 
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assessed as being temporary.  Nevertheless, Howard and Costello were very keen to 

soothe the concerns of heavily-indebted voters regarding interest rates. 

 

In doing so, they often made reference to underlying inflation.  Their argument was 

that since in the short-to-medium term, prices for bananas and petrol should return to 

their supposed normal levels, the increase in the CPI should return to the 2-3 per cent 

band within a few quarters.  Meanwhile, the underlying rate (adjusting for these 

temporary effects), they said, was a more reflective measure of inflation, and should 

be given more attention.  Political science may suggest that this argument is 

asymmetric in nature, since political leaders would presumably not be nearly as 

concerned if the headline CPI rate were below the lower bound of the target band. 

 

Nevertheless, should the headline rate be accepted as the ‘true’ or at least 

representative rate of inflation (rightly or wrongly), then the simple fact remains that 

underlying rates involve manipulating (or at least filtering) the composition of 

components that are used to calculate the headline rate.  When it comes to the issue of 

the manipulation of the series of any economic variable, there is a healthy debate on 

whether such manipulation distorts the underlying time-series properties of the data.  

In fact, the debate on other forms of statistical agency manipulation, such as seasonal 

adjustment (for example) centres on not one, but numerous issues.  Among these 

issues is the question of whether forecasting accuracy is affected adversely by the use 

of manipulated data to estimate the underlying forecasting model.  This issue is just as 

relevant to the headline versus underlying inflation rate problem as it is for the 

seasonal adjustment problem. 
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This empirical study aims to go some way towards addressing the issue raised above.  

To achieve this aim, this study necessitates the modelling and forecasting of headline 

inflation and various measures of underlying inflation.  The chosen methodology for 

this purpose is the structural time-series approach of Harvey (1989), which is model-

based.  Here, out-of-sample forecasts (both one-period ahead and multi-period ahead) 

are generated from the estimated general model such that the underlying inflation 

forecasts then have the volatility built back into them (via a simple process) for the 

purposes of comparability.  Following that, numerous forecasting accuracy criteria (in 

terms of magnitude of errors) are evaluated to determine the relative suitability of 

headline and underlying inflation data to forecast the underlying model.  

 

This paper proceeds in the following manner: next, a short recount of the literature on 

headline and underlying inflation, as well as the effect of general transformation of 

data by statistical agencies on forecasting accuracy, is provided.  Following that, the 

specification of the general model that can then be used for the purpose of model-

based seasonal adjustment is presented. This is the structural time series model 

suggested by Harvey.  Subsequently, the results of the relative forecasting accuracy of 

the series are presented, along with a brief discussion.  The paper concludes with 

some closing remarks. 

 

2.  Literature Review on Statistical Manipulation and Forecasting Accuracy 

Similarly with respect to other aspects of the debate over manipulation of economic 

time series, the literature on forecasting possesses no shortage of contributions in 

relation to the effect of seasonal adjustment.  Among the initial contributions were 

those of Makridakis and Hibon (1979) and Plosser (1979), from which countless other 
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papers have followed.  However, the same stream of research has, by and large, failed 

to extend to alternative popular methods of other forms of statistical manipulation of 

time-series data by statistical agencies, such as the Henderson trend methodology 

used commonly by the ABS. 

 

However, much of the literature pertaining to headline and underlying measures of 

inflation is quite contemporary, which is unsurprising when it is remembered that 

inflation targeting is still a relatively recent phenomenon.  The early work 

concentrated mostly on evaluating such measures of underlying inflation.  More 

recent examples along this theme include Vega and Wynne (2003) on Euro-area data, 

finding that the underlying measures did not result in an improved ability to pick up 

an impending rise in trend inflation.  Dixon and Lim (2004) meanwhile, in an 

Australian context, concluded that none of the underlying measured were satisfactory, 

largely on the basis that they improperly excluded useful information. 

 

However, much of the literature is more sanguine about the use of underlying 

inflation in central bank decision making.  Roberts (2005) found the underlying 

inflation measures to perform reasonably well according to the set criteria, and added 

that the measures can ‘…add value to the analysis’ (p.28) of trends in inflation.  

Furthermore, Brischetto and Richards (2006) affirmed this, finding that trimmed mean 

measures of inflation specifically outperformed both the headline and item exclusion 

methods, in terms of a signal-to-noise ratio approach. 

 

In recent times, similar exercises in looking at forecasting accuracy have been 

evident.  Stavrev (2006) used a generalised factor dynamic model for Euro-area data.  
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The forecasts from this method outperformed the trimmed mean, which in turn 

outperformed the permanent exclusion method.  However, all of these individual 

methods were outperformed by a simple composite average of the three, hence 

reducing bias without a great loss of efficiency.  Meanwhile, Camba-Mendez and 

Kapetanios (2005) suggest that dynamic factor methods of underlying inflation are 

superior to traditional methods with respect to forecasting, since they have certain 

vagaries. 

  

Of most relevance to this study, however, is the application to Australian data by 

Song (2005), in which a more mechanical procedure than that used here is employed.  

Song found that the various measures of underlying inflation had very similar 

forecasting ability to the headline measure, and that there was some (albeit weak) 

evidence that one of the measures outperformed the headline rate in terms of 

forecasting.  It is this study that the current paper intends to build on, to see whether a 

model-based approach to forecasting provides similar results to those obtained 

previously. 

 

3. Specification and Estimation of Harvey’s Structural Time Series Model 

This section relates primarily to the econometric methodology utilised for estimating 

the various forecasting models.  The structural time-series model of Harvey (1989), 

based on the Kalman filter, is called ‘structural’ in this context because each time 

series is modelled as a set of components that are not observable directly, however, 

they still do have a direct economic interpretation.  These components can then be 

aggregated additively to reproduce the actual series.  Within the representation of 

Harvey (1989), the time series, , can be expressed by the equation ty
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 tttttt xy ετγφμ ++++=  (1) 

whereby tμ  is the trend component, tφ  is the cyclical component, tγ  is the seasonal 

component and tε  is a white noise random component.  Furthermore,  is a dummy 

variable relating to the introduction of the Goods and Services Tax (GST); with a 

sensitivity parameter, 

tx

τ , such that 

  (2) 
⎩
⎨
⎧ −=∀

=
otherwise 1

inclusive 2000Q21986Q4  0 t
xt

 

Equation (1) is restricted by ( ) 0,,cov =ttt γφμ  and ( )2,0~ εσε NIDt ,  meaning that the 

components cannot be correlated and the error term must be normally and 

independently distributed. 

 

The trend component, representing the long-term movement of the series, is written in 

its most general form as a stochastic linear process, hence 

 tttt ηλμμ ++= −− 11  (3) 

 ttt ζλλ += −1  (4) 

Equations (3) and (4) are subject to the restrictions: ( )2,0~ ηση NIDt  and 

( )2,0~ ζσζ NIDt .  The specification in equation (3) reveals that tμ  (known as the 

‘level’) follows a random walk with a drift factor, tλ  (called the ‘slope’), which itself 

follows a first-order autoregressive process (equation 4).2  Within the context of 

equations (3) and (4), the tμ  process collapses to a random walk with drift factor if 

, and even further to a random walk with no drift if 02 =ζσ 0=tλ  also, and ultimately 

                                                 
2 These components correspond to the intercept and slope (respectively) of a conventional regression. 

 7



to a deterministic linear trend if .  On the other hand, if  but , 

then 

02 =ησ 02 =ησ 02 ≠ζσ

tμ  follows a smoothly-changing process. 

 

Also of importance is the form of the cyclical component, which is assumed to follow 

a stationary linear process, and is represented as thus 

 ttt ba θθφ sincos +=  (5) 

For the purposes of allowing the cycle to be stochastic, a and b (the sensitivity 

parameters) are allowed to change over time.  Establishing a recursion for 

constructing φ  prior to introducing the stochastic elements ensures that there is no 

discontinuation of the series.  By introducing disturbances and a damping factor, the 

following is obtained 

  (6) tttt ωθφρθφρφ ++= −−
*

11 sincos

  (7) **
11

* cossin tttt ωθφρθφρφ ++−= −−

Within this representation,  appears by construction, and *
tφ ( )2,0~ ωσω IIDt , 

( )2*
*,0~

ω
σω IIDt  are requirements of the model.  Here, 10 << ρ  is defined as the 

damping factor on the amplitude and πθ <<0  is the cycle frequency. 

 

Additionally, of just as much consequence for this study is the form of the seasonal 

component. Of the number of specifications the seasonal component can take, the one 

employed in this study is the trigonometric specification (see Harvey, 1989, Chapter 

2; Koopman et al., 2000). This specification is chosen because it allows for smooth 

changes in the seasonals. Hence 

  (8) ∑
=

=
2/

1
,

s

j
tjt γγ
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where tj ,γ  is specified by the following equations 

  (9) tjjtjjtjtj ,
*

1,1,, sincos κλγλγγ ++= −−

  (10) *
,

*
1,1,

*
, cossin tjjtjjtjtj κλγλγγ ++−= −−

where 12/,...,1 −= sj , sjj /2πλ =  and 

 tjtjtj ,1,, κγγ +−= − ,      2/sj =  (11) 

where  and . ),0(~ 2
, κσκ NIDtj ),0(~ 2

*
*
, κσκ NIDtj

 

The degree to which the various component evolve over time depends on the values 

of the variances , , ,  and , which are known as ‘hyperparameters’.  

To make numerical estimation easier, it is assumed that  and .  

These hyperparameters and the components can be estimated via maximum likelihood 

once the model has been written in a state space representation of equation (1). 

2
ησ

2
ζσ

2
ωσ

2
κσ

2
εσ

22
* ωω

σσ = 22
* κκ

σσ =

 

In determining the optimal model for the various measures of inflation, a very general 

methodology is executed – that is, the most general model is estimated for all inflation 

measures, so that the model is directly comparable.  Specifically, the version of the 

model that is estimated is one that includes a stochastic trend (stochastic level and 

stochastic slope), a trigonometric seasonal, the maximum three cycles and an irregular 

component.  This combination corresponds to the default settings in the modelling 

software, STAMP 6.0 (Koopman, Harvey, Doornik and Shephard, 2000).  Since this 

model produces excellent fit, diagnostic and structural stability results, there is no 

need to experiment with alternative specifications.  Further, imposing a general model 

on all measures of inflation ensures that there is no intention of implicitly ‘favouring’ 
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some measures over others due to the fitting of a model that is more appropriate for 

any single measure. 

 

4.  Summary of Results 

In examining the comparison of ‘headline’ and ‘underlying’ measures of inflation for 

forecasting accuracy, all of the empirical results presented in this study are produced 

on the basis of the following four Consumer Price Index (CPI) series.  The ‘headline’ 

rate is the aggregate CPI measure for all 90 expense classes (in 11 different groups) 

and all cities (henceforth referred to as CPI).  The first ‘underlying’ measure is the 

analogous CPI measure ‘Excluding Volatile Items’ (EVI), whereby the items under 

scrutiny (namely the group ‘fruit and vegetables’ and expense class ‘automotive fuel’, 

which are inherently volatile) are removed from the calculations.3  The second 

underlying measure is the weighted median measure (WMD), whereby the 90 expense 

classes are ranked from lowest to highest percentage change for that quarter, and the 

percentage change from the median class (weighted by respective influence of each 

class on the overall index) chosen.  The final measure is the trimmed median measure 

(TMN), in which the highest and lowest 15 per cent of expense classes are eradicated, 

and the (unweighted) mean of the remaining 70 per cent of classes calculated.  The 

sample period for all four series extends from 1987Q1-2006Q1, resulting in a total of 

77 quarterly observations.  The quarter-on-quarter inflation rates are then used to 

produce a price index, which is assigned an arbitrary value of 1 for 1986Q4, and is 

retained in levels rather than converted to logs – this means that it is actually the price 

level that is being forecasted, rather than the inflation rate.  All series are obtained 

electronically from RBA Bulletin Database via DX Database 4.0. 

                                                 
3 This corresponds to 5.89 per cent of the total CPI weighting. 
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Figure 1 illustrates the four price level series that are obtained from the headline series 

and each of the underlying measures, with the legend at the bottom to distinguish the 

various series.  The structural break in both CPI and EVI arising from the GST in 

2000Q3 is clearly visible.  While it may not be evident from a visual inspection of the 

price level series, the underlying inflation measures reduce substantially the standard 

deviation in the quarter-to-quarter inflation rate.  Specifically, the EVI, WMD and 

TMN measures reduce the standard deviation in the CPI series by 19.9, 21.2 and 18.9 

per cent, respectively. 

 

Since the model is estimated in levels, it is implied that the components are additive 

rather than multiplicative. The estimation is based on all four series over the entire 

sample period less the forecast period.  The forecast period extends from 2001Q3 to 

the end of the sample (2006Q1), resulting in a total of 18 quarterly point forecasts.  

Two sets of forecasts are then generated for each inflation measure: the first set 

comprises of one-period ahead forecasts, whereby the model is estimated over a 

sample period including 2001Q2. The process is then repeated by including one 

further observation in the estimation sample to generate a forecast for the following 

quarter.  The second set comprises multi-period ahead forecasts, in which the model is 

estimated up to 2001Q2, and then used to generate dynamic forecasts.  Multiple 

forecast horizons would have been preferable; however, forecasting from prior to 

2000Q3 would unfairly discriminate against the CPI and EVI series due to the GST-

induced structural break.  Furthermore, forecast horizons much after 2001Q3 have 

limited usefulness due to the small number of point forecasts. 
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Table 1 outlines the full results for the univariate estimation of equation (1) for all 

four measures of inflation.  The top section displays the final state vector estimates of 

the various components, along with the standard errors of the level and slope 

components of both variables.  The second section reveals the value of the 

hyperparameters, in addition to their respective q-ratios.  The final section of table 1 

shows both the goodness-of-fit and diagnostic results. 

 

For the purpose of the following explanation of the test statistics used in table 1, 

denote the residuals from equation (1) as tε  where Tdt ,...,1+=  (T  represents the 

sample size).  Given this framework, the goodness-of-fit is measured by the standard 

unadjusted coefficient of determination, 2R , which can be calculated as 

 ( )
( )∑

=

−

−
−= T

t
t

dTR

1

2

2
2

~
1

εε

σ  (12) 

Also reported is the modified coefficient of determination, , which is calculated as 2
dR

 ( )
( )∑

=

Δ−Δ

−
−= T

t
t

d

xx

dTR

2

2

2
2

~
1 σ  (13) 

where xΔ  is the sample mean of the first difference of .  The reason for the use of 

 is that for data where  exhibits trend movements, it is more appropriate to 

compare the prediction error variance with the variance of , making it preferable to 

the conventional 

tx

2
dR tx

tx

2R  (see Koopman, Harvey, Doornik and Shephard, 1999).  Also 

reported is the standard error of the estimated equation, σ~ , calculated as the square 

root of the one-step-ahead prediction error variance. 
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The diagnostic tests include the Bowman and Shenton (1975) test for normality, N, 

distributed as ( )22χ .  The N test is based on the joint departures of the third and 

fourth moments from their predicted values under normality. The third and fourth 

moments represent measures of skewness ( )S  and kurtosis ( )K  respectively (for a 

normal distribution they have values 0 and 3).  The test statistic is calculated as 

 ( )( )222 3
246

−⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

= KdTSdTN  (14) 

The presence of heteroscedasticity is also tested for, by the  test, which follows 

an  distribution (henceforth denoted as H).  H is calculated as the ratio of the 

squares of the last h residuals to the squares of the first h residuals, where h is the 

closest integer to 

)(hH

),( hhF

3T .  Alternatively, H can be expressed more formally as 

 ( )
∑

∑
++

+=

+−== hd

dt
t

T

hTt
t

hH 1

1

2

1

2

ε

ε
 (15) 

A high (low) H value implies an increase (decrease) in the variance over time.  Also 

reported is the Ljung and Box (1978) Q statistic for serial correlation based (in this 

model) on the first 6 autocorrelation coefficients, distributed as , where 

n is the number of autocorrelation coefficients, and k is the number of estimated 

parameters.  Specifically, it is calculated as 

)1(2 kn −+χ

 ( ) ( )∑
= −

+=
n

j

j

nT
r

TTqnQ
1

2

2,  (16) 

where  is the autocorrelation coefficient of order j.  The most conventional serial 

correlation test is also reported, the Durbin-Watson (DW) statistic, which can be 

defined as the ratio of the sum of squared differences in successive residuals to the 

residual sum of squares, or alternatively 

jr
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( )

∑

∑

=

=
−−

= T

t
t

T

t
tt

DW

1

2

2

2
1

ε

εε
 (17) 

Overall, the results indicate a group of four extremely well-specified models.  The σ~  

( )2R  stat is lowest (highest) for WMD and TMN, however the ordering for the  is 

not the same, with the estimated components explaining 70 and 80 per cent of the 

variation in the observed series.  Furthermore, the model passes all of the diagnostic 

tests without exception – both of the serial correlation tests, as well as the NO and H 

tests, demonstrating model validity. 

2
dR

 

In order to test for structural breaks, both the predictive failure ( )PRF  and CUSUM 

 statistics are used to determine how well the model predicts out-of-sample.  

Both test statistics are ultimately calculated from the forecast errors.  For a formal 

representation of these test statistics, assume that there are L out-of-sample forecasts 

of , denoted by 

(CUS)

tx l++= TTt ,...,1 , resulting in the calculation of forecast errors of 

 for each . Within this framework, the PF test statistic, 

distributed as , is calculated as 

tw lK ++= TTt ,,1

( )l2χ

  (18) ( ) ∑
=

+=
l

1

2

m
mTt wPF

whereas the CUSUM test statistic, distributed as ( )kTt −− l , is determined by the 

relation 

 ( ) ∑
=

+

−
=

l

l
1

2
1

m
mTt wCUSUM  (19) 
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The results of the PF and CUSUM tests for the four models are displayed in table 1.  

All three models pass the tests for structural stability, a good result considering the 

difficult nature of the out-of-sample period as discussed previously. 

 

Finally, a comparison a overall model validity can be attained by looking at the 

Akaike (1973, 1977) information criterion, AIC and the Schwarz (1978) Bayesian 

criterion, SBC.  The results at the bottom of table 1 indicate that the chosen 

specification is comparably suitable for each of the four models.  However, it must be 

remembered that the models are not entirely comparable.  Nevertheless, this finding is 

still useful, even if albeit at a casual level. 

 

Figures 2 and 3 reveal the one-period and multi-period ahead forecasts respectively, 

compared to the actual values, based on both the headline and underlying rates. The 

raw forecast errors derived from the headline rate ( )H
tξ  are obtained simply by 

subtracting the raw forecast, , from the realised value, , as in equation (20).  

However, the raw forecast errors for the trended series (same notation again, but with 

a U superscript instead) need to be adjusted by building back in the volatility that has 

previously been removed by the various procedures used to calculate the underlying 

rate.  If this correction is not made, then the two sets of forecasts are not comparable 

directly, because  on the left-hand side of equation (1) in the separate models 

for each variable.   In summary, the two sets of forecasts are derived according to the 

formulae 

H
tŷ H

ty

U
t

H
t yy ≠

  (20) H
t

H
t

H
t yy ˆ−=ξ

 
( )

⎥
⎦

⎤
⎢
⎣

⎡
−= H

t
U
t

U
tU

t
Us
t yy

y
y

ˆ
ξ  (21) 
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From a quick visual inspection of figures 2 and 3, it does appear to be the case that the 

underlying rate price level series systematically underperforms the equivalent 

headline rate data for forecasting purposes, particularly so in the latter case.  

Nevertheless, we look towards more formal statistical evidence for further indication. 

 

The selected quantitative measures of forecasting accuracy are displayed in table 2. 

The measures are as follows: (i) mean absolute error (MAE); (ii) sum of squared 

errors (SSE); (iii) root mean square error (RMSE); (iv) mean absolute percentage error 

(MAPE); and (v) Theil’s inequality coefficient (TIC), which is simply the quotient of 

the root mean square error divided by the notional root mean square error from using 

naïve forecasts.  Turning point or directional errors are not reported here, as they do 

not reveal much. 

 

Starting with the one-period ahead forecasts, the various measures of forecasting 

accuracy are exposed in the top panel of table 2. It can be gleaned from this panel that 

the RMSE in particular (the benchmark measure) from each of the three underlying 

measures is quantitatively smaller than those derived from the headline rate.  

Compared between the underlying measures, the RMSEs are roughly comparable, 

with WMD the smallest quantitatively of the three, followed by TMN then CEV.  

These findings are reinforced unanimously by all of the other measures of forecasting 

accuracy.  For multi-period ahead forecasts, as exhibited in the bottom panel of table 

2, the same findings apply in terms of the underlying measures having quantitatively 

lower RMSEs than the headline rate, and the quantitative ordering of the three 

underlying measures.  Furthermore, the quantitative differences between the four 

measures are more profound in the multi-step ahead case. 
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What is required at this stage, however, is a test of whether the differences in these 

RMSEs are statistically significant.  In this endeavour, the Ashley et al. (1980) AGS 

test is applied to test for the difference of the RMSEs between the four models.  By 

taking the models and comparing them in pairings, the AGS test requires the 

estimation of the linear regression 

 ( ) ttt uSSD +−+= 10 αα  (22) 

where 

 

{
{
{
{⎪

⎪
⎩

⎪
⎪
⎨

⎧

<+−
<<+
<<−−
>−

=

0,if:
0if:
0if:

0,if:

2121

1221

2121

2121

wwww
wwww
wwww

wwww

D

tt

tt

tt

tt

t  (23) 

and 

 

{
{
{
{⎪

⎪
⎩

⎪
⎪
⎨

⎧

<−−
<<−
<<+−
>+

=

0,if:
0if:
0if:

0,if:

2121

1221

2121

2121

wwww
wwww
wwww

wwww

S

tt

tt

tt

tt

t  (24) 

Also, S is the mean of S,  is defined as the out-of-sample error at t of the 

model with the higher (lower) RMSE, and 

tw1 ( tw2 )

lK ++= TTt ,,1 . 

 

The estimates of 0α  and 1α  in equation (22) are used to test the statistical difference 

between the RMSEs of the multivariate and univariate models. If the estimates of 0α  

and 1α  are both positive, then significance is determined by the Wald coefficient 

restriction test, CR, of the joint restriction 010 == αα ,  distributed as .  If one 

of the estimates is significantly negative, however, then the test is inconclusive.  

Finally, if the estimate is negative but statistically insignificant, the test will still be 

( )s2χ

 17



conclusive, with significance being determined by the upper-tail of the t-test on the 

positive coefficient estimate. 

 

The results of the AGS test are presented in table 3. Beginning with the one-step ahead 

forecasts in the top panel, we first compare CPI with CEV, which is the model of the 

underlying measures with the highest RMSE.  It can be seen that both coefficients are 

positive and the CR statistic is significant at the 5 per cent level, indicating that the 

‘worst’ of the underlying inflation measures still outperforms the headline rate.  It 

seems reasonable to assume, therefore, that this finding also applies for the other two 

measures.  At the other end of the spectrum, we are also interested whether any of the 

underlying measures provides superior forecasts to the others.  Hence, we compare 

the other two models (with the lowest two RMSEs), TMN and WMD.  Here, 0α  is 

found to be significantly negative, meaning that the test is inconclusive here.  For this 

reason, we then compare WMD and CEV (which has a higher RMSE than TMN).  On 

this occasion, both coefficients are positive, but CR is insignificant, implying that 

there is no qualitative difference between the two RMSEs.  Overall, the evidence is 

not supportive of the proposition that there is a significant difference between the 

forecast ability of the three underlying measures. 

 

The analogous results for the multi-period ahead forecasts (shown in the bottom panel 

of table 3) tell a more conclusive story.   When comparing CPI and CEV, once again 

it is shown that both coefficients are positive and CR is significant at 5 per cent, 

demonstrating that even the ‘worst’ underlying measure outperforms the headline 

rate.  This time, the same results apply when comparing WMD with both TMN and 
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CEV, meaning that the trimmed mean model does actually stand out as a superior 

forecasting tool, compared with the other underlying rate measures. 

 

5. Conclusion 

This study has attempted to cast some assertions regarding the suitability of using 

underlying measures of inflation compared with the more widely reported headline 

CPI, for the purposes of forecasting.  The focus of this objective has been a 

comparative one, via the fitting of a general model and the adjustment of the forecast 

error series wherever necessary, in order to make the two sets of forecasts comparable 

in a direct sense.  The usual quantitative measures of forecasting accuracy are 

considered here, whereby measured accuracy depends on the deviation of the 

forecasts from their realised values.  Another feature of this paper is the use of both 

one-period ahead and multi-period ahead forecasts. 

 

Taking the results of Song (2005) as a base, it is possible to conclude that the more 

flexible structural time-series approach advocated here provides the same conclusions 

in terms of the null hypothesis that using underlying rates of inflation does not 

adversely affect forecasting accuracy.  However, the results here are more conclusive, 

insofar that strong evidence is found that, if anything, using underlying measures of 

the inflation rate actually improve forecasting accuracy.  The results, however, are 

very different between the one-step and multi-step forecasts.  For the former, in fact, 

it is very difficult to qualitatively separate between the three underlying measures 

considered, although for the latter, the evidence is more conclusive, indicating that the 

weighted mean measure outperforms both the trimmed mean and excluding volatile 

items measures. 
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More generally, the findings support the evidence of Moosa and Ripple (2000) and 

Lenten and Moosa (2007), who both utilise a very similar methodology, insofar that 

the forecasting accuracy is not affected adversely by the use of data that has been 

manipulated by statistical agencies using common procedures.  Therefore, these 

results amount to quite significant support of the manipulation of Australian inflation 

data by the ABS and RBA for reporting purposes, at least of the grounds of 

forecasting accuracy. 
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Table 1: Estimation Results 
 

 CPI CEV WMD TMN 
Final State Vector Estimates  (Standard Errors) 

μ  1.6609* 
(0.0047) 

1.7427* 
(0.0044) 

1.6615* 
(0.0013) 

1.6730* 
(0.0030) 

λ  0.0054* 
(0.0023) 

0.0102* 
(0.0019) 

0.0125* 
(0.0019) 

0.0112* 
(0.0018) 

φ  0.0232 0.0007 0.0003 0.0001 
*φ  0.0026 0.0011 0.0006 -0.0004 

1γ  -0.0002 
(0.0010) 

-0.0005 
(0.0006) 

0.0003 
(0.0004) 

0.0004 
(0.0005) 

*
1γ  0.0004 

(0.0030) 
-0.0004 
(0.0006) 

-0.0001 
(0.0004) 

-0.0004 
(0.0005) 

2γ  -0.0003 
(0.0030) 

-6.02×10-6

(0.0004) 
-0.0001 
(0.0002) 

0.0002 
(0.0003) 

τ  0.0433* 
(0.0058) 

0.0494* 
(0.0039) 

-0.0047 
(0.0025) 

-0.0027 
(0.0026) 

Hyperparameters (q-ratios) 
2
ησ  0.0000 

(0.0000) 
0.0000 

(0.0000) 
0.0000 

(0.0000) 
8.70×10-5

(0.0702) 
2
ζσ  1.57×10-6

(0.2360) 
1.08×10-6

(0.4158) 
1.08×10-6

(0.4158) 
0.0012 

(1.0000) 
2
ωσ  0.0000 

(0.0000) 
2.61×10-6

(1.0000) 
9.40×10-7

(0.4238) 
0.0003 

(0.2229) 
2
κσ  0.0000 

(0.0000) 
1.21×10-8

(0.0046) 
1.08×10-9

(0.0005) 
8.83×10-5

(0.0712) 
2
εσ  6.63×10-6

(1.0000) 
1.95×10-6

(0.7469) 
2.97×10-7

(0.1341) 
0.0011 

(0.9253) 
Goodness-of-fit and Diagnostics 

σ~  0.0055 0.0038 0.0027 0.0027 
2R  0.9990 0.9996 0.9998 0.9998 
2
sR  0.7240 0.7834 0.7154 0.7049 

DW 1.9718 1.9547 1.9890 1.9732 
Q 10.42 6.4405 6.9910 1.3036 

NO 2.2747 1.7873 2.1231 2.0089 
H 0.4272 0.6942 1.2552 0.7772 
PF 34.03* 9.9897 8.5998 12.60 

CUSUM 0.5942 0.5846 0.0919 0.0626 
AIC -9.8008 -10.54 -11.21 -11.19 
BIC -9.1725 -9.9101 -10.58 -10.57 

*Significant at the 5 per cent level.  The critical values associated with the 5 per cent level are 
approximately as follows: Q ~  ≈ 12.60; N ~ ( )62χ ( )22χ  ≈ 5.99; H ~ ( )18,18F  ≈ 2.17. 
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Table 2: Measures of Forecasting Accuracy for Attendances Using All Three 
Forecasting Models 

 
One-Step Ahead 

 CPI CEV WMD TMN 
MAE 6.84×10-3 2.69×10-3 1.62×10-3 2.10×10-3

SSE 1.27×10-3 1.59×10-4 7.48×10-5 1.59×10-4

RMSE 8.39×10-3 2.98×10-3 2.04×10-3 2.50×10-3

TIC 1.0317 0.3658 0.2506 0.3079 
MAPE 0.3875 0.1461 0.0926 0.1179 

Multi-Step Ahead 
 CPI CEV WMD TMN 

MAE 0.0992 0.0149 6.67×10-3 8.59×10-3

SSE 0.2096 5.18×10-3 1.27×10-3 5.18×10-3

RMSE 0.1079 0.0170 8.39×10-3 0.0101 
TIC 1.3914 0.2188 0.1082 0.1304 

MAPE 5.4557 0.7951 0.3702 0.4751 
 

 
 

Table 3: Results of the AGS Test for Statistical Significance of the Difference 
between RMSEs of Alternative Forecasting Models 

 
One-Step Ahead 

 0α  1α  CR 
CPI/CEV 3.37×10-3

(0.2706) 
0.6777* 
(5.1700) 

26.81* 

TMN/WMD -0.0993* 
(-36.86) 

-0.1871 
(0.2758) 

1,525* 

CEV/WMD 8.29×10-3

(0.8929) 
0.4151 

(1.5112) 
2.5721 

Multi-Step Ahead 
 0α  1α  CR 

CPI/CEV 0.0843* 
(43.18) 

0.7101* 
(17.98) 

2,188* 

TMN/WMD 0.0018 
(2.7687) 

0.6777* 
(2.3699) 

11.60* 

CEV/WMD 0.2999* 
(6.6798) 

0.2347* 
(4.8876) 

197.66* 

The t-statistics are given in parentheses.  *Significant at the 5 per cent level.  The critical value 
associated with the 5 per cent level is approximately: LR ~ ( )22χ  ≈ 5.99. 
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Figure 1: Headline and Various Underlying Inflation Measure Price Level
Series for the Full Sample
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Figure 2: One-Step Ahead Forecasts Using Headline (Solid Line) 
and Underlying (Dashed Line) Data Versus Actual (Bold Line)
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Figure 3: Multi-Step Ahead Forecasts Using Headline (Solid Line) 
and Underlying (Dashed Line) Data Versus Actual (Bold Line)
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