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speed of information exchange.
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1. Introduction

Financial markets modelling is a constantly growing research area within the field
of financial economics. It is highly attractive to the researchers who are armed with
computational and numerical methods due to the structure of the real financial
markets that are populated with a large number of various interacting traders. The
impact of a single market participant on the dynamics of the price is usually negligi-
bly small, however, she may influence the behavior of a small group of other traders
who, in turn, can affect the behavior of others and, thus, influence the whole market
to some extent. Financial markets, therefore, can be viewed as a ”soup” of diverse
agents who trade in attempt to maximize their profits and who interact intensively
with each other making the market resemble a constantly boiling mixture.

Multi-agent modelling is a major tool to cope with such dramatically complex
systems with intricate interactions among their constituents. It allows to employ the
bottom-up approach, focusing on micro level of the agents interaction but aiming at
studying macro effects of the asset price dynamics. Many of these systems are now
studied with the help of computers that gained greatly in speed of computations
in the recent years. One can tentatively distinguish two types of financial market
models: heterogeneous agent models and agent-based models.

The models of the first type are relatively simple and analytically tractable. They
posses an important feature of rigorous microeconomic foundation incorporated in
their set-up while allowing for heterogeneity. Due to their analytical nature often
closed-form solutions can be found, otherwise advanced numerical methods of non-
linear dynamics and bifurcation theory can be applied for the analysis. An excellent
recent survey of the state of the art in heterogeneous agent modelling is written by
Hommes (2006) in the Handbook of Computational Economics.

The initial steps on the way to the heterogeneous agent approach were taken
by several scholars in the early ninetieth, among which are Day and Huang (1990),
DeLong et al. (1990), Chiarella (1992), Kirman (1993) and Lux (1995). These early
models focused mostly on the stylized analysis of the simple behavioral rules as a
cause of endogenous fluctuations.

Following this line of research, Brock and Hommes (1997) and Brock and Hommes
(1998) introduced the notion of Adaptive Belief System. In their set-up several types
of agents have diverse beliefs about the future, which they adapt from the past his-
tory by switching from one strategy to another according to a certain fitness measure.
With the help of methods of nonlinear dynamics the authors showed that a market
populated with heterogeneous agents trading repeatedly in a Walrasian framework
combined with evolutionary updating of their beliefs is able to replicate some of the
stylized facts and reproduce chaotic behavior of asset prices.

Anufriev and Bottazzi (2004) supplemented the above model with heteroge-
neous horizons of the agents, while Anufriev and Panchenko (2006) investigated
the changes in the model outcomes when different market mechanisms are intro-
duced. de Fontnouvelle (2000) enriched the model with various information flow
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schemes about the dividend payments, Brock et al. (2005) examined an extension
to many trader types, Gaunersdorfer (2000) introduced heterogeneity of beliefs with
respect to the returns volatility, Hommes et al. (2005) included a market maker into
the market pricing mechanism, and Brock et al. (2006) studied how the presence of
risk hedging instruments in form of Arrow securities affects market dynamics.

The second type of financial market models, the agent-based models, evolved
from the first attempts to create real-proportion artificial stock markets simulated
on computers. Santa Fe market (Arthur et al., 1997) is an example of such an ap-
proach. Some of the subsequent agent-based models are Großklags et al. (2000),
Chen and Yeh (2001), Chen et al. (2001) and Duffy (2001). Such models are more
computationally oriented and deal with a large number of artificial agents. Their
major advantage is that they allow for richer behavioral assumptions and more re-
alistic market architectures. They are generally implemented on computers and the
results are almost always presented in the form of simulations. Closed-form solu-
tions or numerical analysis of these models are practically unmanageable either due
to their overwhelming complexity, or because their set-up could include units that
may be difficult to tackle analytically, e.g. genetic algorithms or network formation
modelling. A thorough overview of the field of the agent-based modelling is written
by LeBaron (2006) to which we refer the reader.

The communication effects in the multi-agent framework subject to different
agents interaction arrangements are relatively unexplored. Commonly, the agents
are either assumed to be randomly connected with each other or are conceived to
interact on a completely regular basis, although many real-world complex systems
possess some intermediate properties (Watts and Strogatz, 1998). We incorporate
a network framework into the heterogeneous agent model of Brock and Hommes
(1998) and transform it into an agent-based model by imposing additional structure
on the agents interactions.

Our aim is to study asset price dynamics and its stability subject to different
local interaction arrangements. We examine the effect of various network topologies
on market behavior starting from a regular lattice, shifting through faintly ran-
dom to completely stochastic structures, thus, exploring the whole range of possible
interaction patterns.

The market in our model represents a network with nodes symbolizing the agents
and edges standing for connections between them, thus, embodying local interactions
in the market. A network is represented as a graph with many heterogeneous nodes
connected by un-weighted and undirected links. By local interactions we mean any
kind of interplay between the decisions of the agents unaffected by the market mech-
anism and unrelated to the physical distance between the agents. As a benchmark
case we take a fully connected graph that represents a network implicitly modelled
in most of the multi-agent models with agents possessing information about all the
other traders in the market. We assume that the agents are passive with respect
to the network topology, thus, taking the network as given and not being able to
modify it.
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Our approach, therefore, is a side-step from an analytically tractable hetero-
geneous agent model of Brock and Hommes (1998) towards more computationally
oriented agent based modelling. Our model retains attractive microeconomic foun-
dation of heterogeneous agent models and, at the same time, attains more realistic
structure of local interactions imposed on the traders in the market. Hence, we
are able to replenish the model of Brock and Hommes (1998) with an even more
credible framework of the agents interplay. We show that the level of connectivity
and randomness of the network has a profound effect on the price dynamics.

The structure of the paper is the following. In the next section we provide an
overview of the literature on the agents interaction modelling in financial markets,
describe different structures of networks and examine their properties. Section 3
focuses on our model of network theory application to the model of Brock and
Hommes (1998). In Section 4 we describe the artificial market, present and discuss
the results of the simulations. Section 5 concludes the paper.

2. Local interactions and network design

To a large extent ideas and practices are adopted by communities through interper-
sonal communication. Popular ideas in financial markets, too, often spread through
conversations (Shiller, 1995). Shiller and Pound (1989) surveyed 131 institutional
investors in the United States. They found that money managers who invested in
stocks that experienced extremely high growth of the price/earnings ratio were of-
ten participating in interpersonal communication with colleagues from within and
outside of their institutions regarding the stocks they purchased. Arnswald (2001)
surveyed fund managers in Germany and analyzed 275 completed questionnaires. He
found that information exchange of fund managers with other financial and industry
experts seconded only by conversations with their colleagues and reports from media.
Madrian and Shea (2000) and Duflo and Saez (2002) show that workers are more
likely to join an investment retirement scheme if their colleagues have done so. By
reviewing data from the Health and Retirement Study, Hong et al. (2004) conclude
that interaction with their neighbors or church attendance increases the likelihood
of a household investing in stocks. A study of fund managers by Hong et al. (2005)
also provides strong support for the importance of word-of-mouth effects.

In addition to the empirical evidence of significance of local interactions among
market investors, many attempts were made to model this phenomenon explicitly.
Among the first papers on the topic is Baker and Iyer (1992). The authors modelled
financial market as a network of agents and examined the effect of network structure
on price volatility and traded volume by considering several regular market arrange-
ments. In their model the agents are homogeneous and only upon the introduction
of a random signal in the network trade in the market could be achieved: the agents
positioned in a certain neighborhood of the buy/sell inducing signals arrival blindly
copy them, thus, giving rise to different trading strategies. This set-up allowed to
show that network structure affects market dynamics.
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Another early contribution is Kirman (1993), who proposed a stochastic frame-
work with the agents forming preferences based on purely random communication
with the others. A later paper also based on random matching is Cont and Bouchaud
(2000), who considered the market traders forming clusters through random inter-
action with no subsequent trade inside but only between such clusters. Lux (1995)
studied mimetic contagion of the agents in the market in a similar to Kirman (1993)
manner. However, in his set-up each agent can observe trading attitude (optimistic,
pessimistic or neutral) of all the other traders and, depending on the predominant
mood in the market, can switch her own trading strategy from an unpopular to the
prevailing one. The above models exemplify the use of two extreme local interaction
arrangements: a random network and a fully connected graph.

Some papers deal with financial markets formed as lattices, an example of an-
other salient network structure with all the traders having the same number of
neighbors. Specifically, Iori (2002) consider a market with the agents forming a
square lattice, so that each agent is connected to precisely four neighbors. Such a
set-up is a version of an often employed Ising model, whose limitation, as well as
of any fully connected network, is the assumption that every agent has the same
number of neighbors connected with him. This fact is at odds with some empirical
findings. For example, Shiller and Pound (1989) found that the number of neighbors
varied pretty much for different stock market investors, with the figure from their
survey ranging between 7 and 21.

In our model we are not stick to any particular network structure, in contrast,
we analyze how network topology affects the market. Our approach resembles that
of Baker and Iyer (1992), however, we exploit the method of Watts and Strogatz
(1998) to construct different random networks through rewiring procedure, thus,
avoiding the necessity to pick only regular networks for the analysis. In essence,
the rewiring procedure breaks off the tie of a randomly chosen edge and attaches it
to another one as the stochastic connectivity parameter varies altering the homoge-
neous connectivity of the nodes. Hence, our model overcomes the shortcomings of
fully connected and lattice-like networks. Moreover, we assume heterogeneity of the
agents and employ an adapted version of a realistic market interaction mechanism of
Brock and Hommes (1998), which allows to model local interactions in a trustworthy
way.

Several works in the field of diffusion of knowledge advanced the topic of net-
work effects in a very close manner to ours. In particular, Cowan and Jonard (2004)
study the effects of the diffusion of a knowledge vector in various network topologies.
Knowledge is bartered only between connected agents and only if there is a double
coincidence of wants for the agents. Further, Morone and Taylor (2004) extend their
model by allowing the network structure to evolve as a result of interactions and
memory about previous interactions. Although we do not address the network for-
mation issue, our model resembles the two above mentioned in the way the network
topology is seen to influence information distribution in the market.

The way we model local interactions goes back to the chain-letter experiments
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of Stanley Milgram conducted in 1967. He showed that any two people are sepa-
rated by about six degrees within their acquaintance network (Milgram, 1967). In
addition, works by Wasserman and Faust (1994) and Valente and Davis (1999), who
performed social network analysis studies, suggested that a typical social network
has the following features (Watts, 1999): 1) there are many participants in the net-
work; 2) each participant is connected to a small fraction of the entire network, in
other words, the network is sparse; 3) even the most connected node is still connected
only to a small fraction of the entire network, that is, the network is decentralized;
4) neighborhoods overlap, i.e. the network is clustered.

To capture these characteristics Watts and Strogatz (1998) introduced a network
model called a ”small world”. Their framework assumes a shift from a regular
lattice through small world networks to a random graph depending on the stochastic
connectivity parameter. Such a model accounts for a wide range of organizational
topologies that are neither regular nor completely random and has been used to
simulate the properties of real-world networks.

By now, a long list of networks with small world properties has been discovered,
among which are social networks of the US corporate elite (Davis et al., 2003),
partnerships of investment banks in Canada (Baum et al., 2003), and many more.
Small world networks emerge when participating agents form networks due to a mix
of random and strategic interactions (Baum et al. (2003) and Morone and Taylor
(2004)).

To build an example of a small world network we start with a regular lattice
with 20 vertexes,1 which is depicted in Figure 1. Each node is connected to two
nodes on each side, that is, each node has 4 edges. With some probability p an edge
is reconnected to a different, randomly chosen, node on the lattice (avoiding self-
and double-connection). Such rewiring of the nodes continues until all the edges are
processed. For the boundary values of the rewiring probability the network remains
regular (p = 0) or becomes a random graph (p = 1).

p=0 p=10<p<1

regular lattice small world random graphfully connected

Figure 1: Network topologies (adapted from Watts and Strogatz (1998)).

Different labelling of nodes of the graphs (black and white dots) is used to dis-
1This number of vertexes is used for an illustrative purpose only; in the model a considerably

higher number of vertexes is used: 100 and 1000.
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tinguish between different types of agents that constitute a network. This aspect
will become apparent in Section 3 where we describe how to employ networks for
financial markets modelling.

The properties of a network with N vertexes and K edges per vertex can be cap-
tured by the clustering coefficient C(p) and characteristic path length L(p) (Watts
and Strogatz, 1998). The former is calculated by dividing the number of edges be-
tween certain neighboring nodes by the maximum possible number of edges Kmax

between them. Averaging over clustering coefficients for all the graph nodes gives
the clustering coefficient of a graph C(p). Characteristic path length L(p) measures
the average separation between two nodes and is defined as the average number of
edges in the shortest path between two vertexes. Rewiring practically introduces
shortcuts between the vertexes into the regular graph. The values of normalized
clustering coefficients and characteristic path lengths for different rewiring probabil-
ities p and network size N are depicted in Figure 2. Normalization is implemented
over the corresponding characteristics of the regular lattice (for which p = 0).
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(a) N = 100
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(b) N = 1000

Figure 2: Clustering coefficient and characteristic path length for networks of differ-
ent size (logarithmic scale is used in order to capture the small world phenomenon).

According to Watts (1999), a small world network can be defined in terms of the
clustering coefficient and characteristic path length. Specifically, it is a decentralized
(N � Kmax � 1), sparsely connected graph with a large number of vertexes whose
characteristic path length is small and close to an equivalent random graph’s, i.e.
L(p) ≈ L(1), but with a much greater clustering coefficient: C(p) � C(1). Albert
and Barabási (2002) suggest that emergence of small world properties depends on
the network size, that is, the rewiring probability leading to a small world network
is inversely proportional to the number of vertexes. Figure 2 supports this point.
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3. Heterogeneous belief model with networks

In this section we introduce local information exchange into the model of Brock and
Hommes (1998).2

As a benchmark we take a fully connected network which corresponds to the
case with the traders being completely informed about the profits and the strategies
of all the other investors in the market.

The set-up of the model is the following. There are two assets that are traded
in discrete time: a perfectly elastically supplied risk-free asset paying a constant
gross return Rf = 1 + rf , and a risky asset paying a stochastic dividend yt at
the beginning of each trading period t, which is assumed to be independently and
identically normally distributed (i.i.d.) with mean ȳ. The price pt per-share (ex-
dividend) of the risky asset in period t is obtained from the market clearing condition
using Walrasian auctioneer scenario. The wealth dynamics reads as follows:

W t+1 = Rf (Wt − ptzt) + (pt+1 + y t+1)zt = RfWt + (pt+1 + y t+1 −Rfpt)zt, (1)

where Wt and W t+1 are the wealth levels in period t and t+1 correspondingly, and
zt is the number of shares of the risky asset purchased at date t. Bold face type is
used to denote random variables at date t + 1.

The agents are assumed to be myopic expected utility maximizers, which is
equivalent to the notion of mean-variance maximization as we assume that the risky
asset return is normally distributed and the agent’s utility function of wealth is
negative exponential (constant absolute risk aversion). The demand for the risky
asset at time t solves

Maxzt{Et[W t+1]−
a

2
Vt[W t+1]}, (2)

where a denotes the coefficient of absolute risk aversion, while Et and Vt denote
conditional expectation and conditional variance based on publicly available infor-
mation set It = {pt−1, pt−2, ...; yt−1, yt−2, ...}. Eh

t and Vh
t are the expectations (or

predictors) of the trader of type h about, respectively, the mean and the variance.
The demand for the risky asset of the type h agent is then given by:

zh
t (pt) =

Eh
t−1[pt+1 + y t+1]−Rfpt

aVh
t−1[pt+1 + y t+1]

=
Eh

t−1[pt+1 + y t+1]−Rfpt

aσ2
. (3)

The agents in the market hold heterogeneous beliefs in the sense of different
conditional expectations but equal and constant conditional variances Vh

t = σ2

among all the types at any period of time. Gaunersdorfer (2000) considered the
model with variances changing over time and obtained similar results as in the case
of constant variances.

2While Brock and Hommes (1998) model is presented in terms of deviations from the fundamental
price, we present the model in terms of absolute price as in Hommes (2001).
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Suppose that the supply of outside shares of the risky asset zs is constant. Denote
nh

t be the fraction of type h at date t and H be the total number of trader types
in the market. The equilibrium of supply and demand then results in the following
pricing equation:

H∑
h=1

nh
t

Eh
t−1[pt+1 + y t+1]−Rfpt

aσ2
= zs. (4)

Under the assumption of zero total supply of the risky asset and homogeneous
(H = 1) beliefs of the agents, the fundamental price p∗ is given by the discounted
sum of the expected future dividends as a solution to the market-clearing equation
(4), which is a well-known result. If, moreover, the dividend process is i.i.d. with
constant mean ȳ, then p∗ = ȳ/rf .

We assume that there are two types of traders present in the market: funda-
mentalists and chartists, who are chosen to represent in a stylized way two dis-
tinct strategies employed in the real financial markets. Fundamentalist traders are
assigned a predictor that forecasts the next period price pt+1 to be equal to the
fundamental price p∗, that is

Ef
t−1[pt+1 + y t+1] = p∗ + ȳ, (5)

while chartists’ predictor assumes persistent deviations from the fundamental value
of the price in the following form:

Ec
t−1[pt+1 + y t+1] = a + gpt−1 + ȳ, (6)

where a > 0 is a constant and g > 0 is the trend parameter. To stay within Brock
and Hommes (1998) framework, we take a = (1− g)p∗.

In Brock and Hommes (1998) the beliefs of the agents are updated over time
through the co-evolution of the trader types fractions nh

t and the market equilibrium
price according to so-called Adaptive Belief System. The fractions of the agents
following a particular trading strategy are updated every period depending on the
values that the performance (fitness) measures of the strategies take on. In the
capacity of a fitness measure Brock and Hommes (1998) propose past realized net
profits:

Uh
t = πh

t − Ch = (pt + yt −Rfpt−1)
Eh

t [pt + y t]−Rfpt−1

aσ2
− Ch, (7)

which is essentially the difference of the excess return in the current period multiplied
by the demand in the previous period and the cost of the strategy Ch. This cost is
zero for the simple forecasting rule of chartists and strictly positive for the funda-
mentalists’ predictor. In Brock and Hommes (1998) the fractions are determined by
the discrete choice probability

nh
t =

exp(βUh
t )

exp(βUh
t ) + exp(βUh−

t )
, (8)
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where β is the intensity of choice parameter and h− is the alternative strategy.
This stochastic discrete choice model is derived within a random utility frame-

work. Refer to e.g. Manski and McFadden (1990) for an exhaustive treatment of
discrete choice models. To obtain this functional form one needs to assume that
random utility or performance Ũh

t is represented as

Ũh
t = Uh

t +
1
β

εh
t , (9)

where εh
t is an i.i.d. random variable from the standard Gumbel (extreme value)

distribution. With this representation (8) is equivalent to nh
t = P(Ũh

t > Ũh−
t ).

The parameter β determines the importance of the fitness measure U in decision
to select a particular strategy. In the extreme case β = 0, the agent does not pay
any attention to the fitness measure and picks a strategy at random with probability
1/2. When β →∞, the agent selects the strategy with the highest fitness measure.

In our set-up the agents are located on the nodes of a network and can observe
the fitness measure of the strategies employed only by those agents who reside on
the nodes directly connected with them. Hence, they cannot observe the strategy
performance of the traders located two or more edges away. Contrary to Brock and
Hommes (1998) we do not assume that the performance of every strategy is available
to all the agents. This is motivated by the fact that some strategies are costly and
are not available to those agents who do not incur costs. Instead, we allow for local
information exchange in the market.

If the agent is surrounded by the agents of the same type (see Figure 3a), she
does not switch as there is no information about the performance of the alternative
strategy. If the agent has at least one neighbor of different type (see Figure 3b), she
is able to compare her own strategy with the alternative one and to switch if the
latter is better in terms of performance.

(a) Same type

U own

U neighb.

(b) Different type

Figure 3: Different neighbor types.

In our setting the parameter β can be naturally interpreted as communication
noise. Given the flexibility of the agent-based modelling, we can introduce noise
directly into the performance (utility) function. We consider two instances: with
symmetric noise and with asymmetric noise. In both cases noise term is distributed
according to the standard Gumbel distribution. In the symmetric case noise with
the same variance (determined by β) is added to both the profit measure of own
strategy and the profit measure of the alternative strategy. In this situation we fully
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replicate the stochastic discrete choice model used in Brock and Hommes (1998).
This set-up may not be fully realistic and is used as a benchmark. In the asymmetric
case the agent observes the performance of her own strategy without noise, which
is added only to the performance of the alternative strategy that is communicated
to the agent.

INITIALIZATION

50% of each type, price p and p
-1 0

EXPECTATION FORMATION

E[p ]
t+1

WALRASIAN AUCTIONEER

Dp=0 and price pt

LOCAL SEARCH

neighbors’ strategies

PORTFOLIO UPDATING, DIVIDENDS

NETWORK STRUCTURE CREATION

from lattice to random

PROFIT BUILDUP

p
t t-1
(z )

DEMAND FUNCTION COMPUTATION

z (p)t

SWITCH with P
if U >U

neig. own

Different type
neighbours

Same type
neighbours

NO SWITCH

Figure 4: Temporal flow.

Our market constitutes a complex
adaptive dynamical system with co-
evolving heterogeneous agents and equi-
librium price. The model progresses in
the following way. After the expecta-
tions of the agents are formed and their
demand is ascertained the price is deter-
mined through the Walrasian auctioneer
scenario. The profit of the agents is de-
termined then and they switch to an-
other strategy or remain with their own
based on the fitness measure. Finally
the agents form their expectations again
and the cycle loops. The timing of the
model is represented in Figure 4.

As we discussed in Section 2, many
social studies recognized small world
networks as the most prominent exam-
ples of local interactions in the real life.
This fact is most likely due to the high
speed of information transmission with
relatively small number of connections
that this network structure allows.

In the next section we investigate
the implications of introducing small
world information exchange into the
Brock and Hommes (1998) model and
compare it with other network topolo-

gies.
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4. Simulations and results

By introducing nontrivial communication structures into the Brock and Hommes
(1998) model, we loose analytic tractability of the solution. Nevertheless, the com-
plex behavior of the resulting models can still be analyzed by means of computer
simulations.3 We conduct simulations for four different network structures of local
interactions, i.e. for a fully connected graph, for a regular lattice, for a small world
graph, corresponding to the rewiring probability of 0.1, and for a random graph (see
Figure 1). All the graphs are connected, that is, there are no vertexes that do not
have any links. The fully connected graph is used as a benchmark corresponding
to the finite number of agents implementation of the original Brock and Hommes
(1998) model. We compare asset price dynamics for two different agent populations
in the models: N = 100 and N = 1000. We also consider two cases discussed in
the previous section: with symmetric and with asymmetric noise in the performance
measure.

(a) Fully connected (b) Regular lattice (p = 0)

(c) Small world (p = 0.1) (d) Random (p = 1)

Figure 5: Bifurcation diagram (N = 100), symmetric noise.

Asset price dynamics for a range of values of the parameter β are shown by
means of bifurcation diagrams in Figures 5 and 6 for the population size of 100 and

3The C++ code for our simulations is partially adopted from the code of Bottazzi et al. (2005).
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(a) Fully connected (b) Regular lattice (p = 0)

(c) Small world (p = 0.1) (d) Random (p = 1)

Figure 6: Bifurcation diagram (N = 100), asymmetric noise.

in Figures 7 and 8 for the population size of 1000. For the both cases the networks
in terms of the occurrence of the bifurcation with respect to the parameter β can
be arranged in the following order (in decreasing value of β): the fully connected
graph (the benchmark), the random network, the small world network and the
regular lattice. This suggests that elimination of links in the fully connected graph
induces price instabilities, while the introduction of the shortcuts in the regular
lattice promotes greater price stability. The amplitude of price fluctuation depends
on the network topology in a similar way: it is the highest for the regular lattice, it
reduces with the increase of p through the small world network to the random graph,
and then attains the smallest value for the fully connected network. This difference
is more evident for the bigger population size. Moreover, the amplitudes of price
fluctuations are substantially greater for N = 1000 in comparison to N = 100.
Surprisingly enough, we find practically no difference in the case of symmetric noise
added to the fitness measure and the case of asymmetric noise, that is when the
noise is added only to the fitness measure received though the communication.

Since some discrepancy in bifurcation analysis was found for different population
sizes, we continue the analysis for the more realistic networks of size 1000. Figure 9
depicts time series of the price for two values of the intensity of switching parameter:
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(a) Fully connected (b) Regular lattice (p = 0)

(c) Small world (p = 0.01) (d) Random (p = 1)

Figure 7: Bifurcation diagram (N = 1000), symmetric noise.

β = 1, and β = 3.5. For β = 1 the price dynamics corresponding to the fully
connected graph and the random network converge to a steady state, while the
regular graph and the small world network lead to highly irregular chaotic asset
price fluctuations. The latter observation is due to the probabilistic nature of the
model as the discrete choice framework with the finite number of agents (in contrast
to the original model with N →∞) is no more deterministic but rather stochastic.
For β = 3.5 chaotic behavior is observed for all the network topologies, however, the
regularity and the amplitudes of fluctuations vary considerably among them.

The analysis reveals that according to the price dynamics the topology properties
of the random network is close to the fully connected network. The price dynamics
produced by the regular lattice is the most distinct from the fully connected network.
The small world network produces price dynamics with the properties somewhere
in between of those of the random graph and the regular lattice.

To provide more insights into the effects of different network topologies on market
behavior we analyze the evolution of every agent in time. In Figure 10 we show the
type of each out of 1000 agents (Agent’s ID axis) at every time step from 0 to 1000
(Time axis). Each dot on every vertical line represents an agent: black dots stand
for fundamentalists, while white dots represent chartists (white space in the figures,
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(a) Fully connected (b) Regular lattice (p = 0)

(c) Small world (p = 0.01) (d) Random (p = 1)

Figure 8: Bifurcation diagram (N = 1000), asymmetric noise.

thus, denotes a mass of chartists sticked together). The figures have a torus-like
layout, that is, every agent situated on one edge (ID 0) is connected to the agent
situated on the other edge (ID 1000). The highest concentration of fundamentalist
corresponds to the fall of price to fundamental level on the time series plot, while
its lowest concentration corresponds to the highest deviation from the fundamental
value of the price. Therefore, the spatio-temporal pattern figures and the time series
plots are intimately interrelated since a change in concentration of one type leads to
immediate change in the asset price dynamics.

We perform the analysis of statistical properties of the time series for all the
four types of networks. Based on this information we could conclude which network
topology is the most realistic one in the sense of statistical properties of the generated
time series matching stylized facts of the real-world financial markets.

We also provide time series plots corresponding to the case of stochastic div-
idends. We assume that the dividends are independent and identically normally
distributed with the mean set equal to 10 and the variance equal to 25. The nega-
tive realizations of the dividend are truncated at zero.

The resulting asset price dynamics is depicted in Figure 11. For β = 1, the time
series of the small world network and the regular lattice exhibit fluctuations with
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Figure 9: Time series of price (N = 1000).
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Figure 10: Spatio-temporal pattern of agents type evolution.

booms and crashes close to those observed in the real financial markets, while the
random graph and the fully connected network exhibit virtually no fluctuations. For
β = 3.5 the regular lattice and the small world network produce large scale irregular
single-peak deviations from the fundamental price, while the fully connected and
the random networks produce relatively regular fluctuation of much smaller order.

It becomes evident if one compares Figure 9 with Figure 11 that the impact
of the stochastic dividend is the strongest on the price dynamics resulting from
the small world interactions arrangement, while its effect is relatively weaker on
the price dynamics corresponding to the other network structures. It is also worth
noticing that the fluctuation amplitude of the price conforming to the small world
network is smaller than the amplitude of the regular network price for the case
of no stochastic dividends, while the situation becomes almost reversed after the
introduction of the stochastic dividends. This is particularly visible for β = 3.5.
Thus, we can conclude that exogenous noise affects small world networks more than
any other network structure, which is most likely a result of the fastest information
transmitting abilities of the local interaction arrangements exhibiting small world
properties.
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Figure 11: Time series of price with the stochastic dividend process (N = 1000).

5. Concluding remarks

In this paper we introduced local information exchange in the form of networks into
the model of Brock and Hommes (1998). While the major qualitative dynamics
are retained, the dynamics of the asset price are enriched by the introduction of
local interactions between the agents. We studied how different network structures
affect asset price dynamics. Upon the analysis of the statistical properties of the
time series generated by different networks we could conclude that the asset price
dynamics generated by a small world network exhibit the properties closest to those
observed in real financial markets. Thus, we conjecture that a small world network
is the most suitable description of the information distribution arrangement.

In many networks there is a feedback between network performance and network
formation. This means that performance of the agents is affected by the network
topology they are active in. But at the same time, network topology may be at
least partially affected by the links created by the participating agents. Therefore,
future work may include preferential attachment. In general, any network formation
mechanism applied to our model can be analyzed as it would bring in more realistic
picture of a market, which is randomly formed in our case.

Another future perspective could be the use of heterogeneous β parameter. We
employ the same value of β for every agent from the consideration of tractability.
But it would be interesting to study how price dynamics changes when different
intensity of switching to another strategy among the agents is introduced. We refer
the reader to our discussion of this issue in Section 3.
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